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In this paper, a methed for analyzing the dynamic response of
a structural system with variable mass, damping and stiffness
is first presented. The dynamic equations of the structural
system with variable mass and stiffness are derived according
lo the whole working process of a bridge bucket unloader.
At the end of the paper, an engineering numerical example is
given.
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1. Introduction

The bridge bucket unloaders and container cranes
are now the main facilities using for loading and un-
loading the goods in ports around the world. The high
working efficiency requires bigger and faster cranes. In
analyzing bridge bucket unloaders, conventional struc-
tural analysis methods produce some errors, sometimes
causing serious problems because of lack of consider-
ation of the complex dynamic behavior.

The bridge crane is a machine with repeating move-
ments including accelerating, hoisting, traversing and
decelerating. There are also two combined movements
such as hoisting with traversing and lowing with
traversing. As the crane becomes heavier, the influence
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of vibration caused by start lifting, load moving and un-
loading will become significant and must be considered
in the crane structure analysis. Based on above and
our experience, we know that the crane steel structure
bears the complex and strenuous vibrations during its
operation. During the trolley and lifting load moving,
thé mass, damping and stiffness matrices of the crane
structure will change simultaneously. So the compli-
cated dynamic response should be taken into account
in the actual structural design. Using the finite element
method and the wide application of the computer, re-
search and analysis on the vibration of the crane steel
structure was conducted. However, the work includ-
ing the dynamic response of the crane with the con-
sideration of the aforementioned factors is quite rare.
In this paper, the variable mass, damping and stiffness
dynamic equations and the solution are presented with
sufficient consideration of the above factors’ influence,
which comparatively really simulates and analyzes all
these kinds of responses of the whole dynamic process
during the unloader’s actual operations.

2. Duty cycle description

One duty cycle for bridge bucket unloader consists
of bucket loading goods from ship, lifting, trolley trav-
eling back to the dock, unloading the goods, trolley
traveling forth to the ship and bucket lowing for load-
ing. There are six basic motions (i.e. bucket closing
for loading, hoisting, trolley traveling back with loads,
bucket opening for unloading, trolley traveling forth
with empty bucket, bucket lowing) and their combi-
nations, shown as Fig. 1. Based on the actual work
process, The forces in the crane structure are relatively
small for the three motions of bucket closing, trolley
traveling with empty bucket and bucket lowing. So in
this paper, we only simulate the rest three motions of
hoisting with loads, trolley traveling back with loads
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Fig. |. Duty cycle of unloader.

and unloading. See the interval Ty ~ T3 in Fig. 1 for
reference.

Based on Fig. I, there are seven moving combina-
tions in the interval Ty ~ Ty described as follows:

1) Hoisting Accelerating phase: The lifting weight
leaves the ground and continues to be accelerated
at the acceleration of Vow. The system stiffness
matrix changes with different elevation of lifting
weight at any moment.

2) Hoisting at uniform speed: The lifting weight
ascends at the rated hoist speed.

3) Hoisting at uniform velocity and the trolley ac-
celerating back move: When the lifting weight is
ascending at the rated hoist speed, in the mean
time, the trolley starts to move back (to dock side)
at the acceleration of a,.. The system mass matrix
changes with the trolley’s movement.

4) Hoisting decelerating and the trolley accelerating
back move: When the lifting weight is ascending
at the deceleration of Vow the trolley continues
to move back at the acceleration of a.

5) Hoisting decelerating phase and the trolley mov-
ing back at the uniform speed: The lifting weight
is ascending at the deceleration of Vow, the trolley
moves back at the rated traversing speed of V.

6) Trolley moving back at the uniform speed and
opening the bucket for unloading: The trolley
continues to move back at uniform speed motion.
The bucket’s open-close rope begins to open the
bucket for unloading at the same time.

7) Trolley decelerating moving back and opening
the bucket for unloading: When the trolley moves
back at the deceleration of a., the bucket contin-
ues unloading.

>

Fig. 2. Hoist diagram.

3. Establishment and solving method of variable
mass, damping and stiffness dynamic equations

Based on above description, we know that the hoist-
ing changes the length of hoisting ropes causing the
variation of the system stiffness matrix and the move-
ment of the trolley and goods causes the variation of
system mass and stiffness matrixes. The dynamic equa-
tions are discussed and established in the following
subdivisions.

3.1. Vibration equation of the lifting weight

1) Y —direction

Shown in Fig. 2, the wire rope tension is ["at a certain
time, the mass of the lifting weightis ALy, W = M, - g,
the dynamic equation in Y-direction is:

A[w(‘.)w + ‘”/ow) =+ Cu"./w + W=F (l)

Where V, is the elastic displacement of the lifting
weight’s center of gravity and F is the elastic restoring
force of the wire rope. C', is damping.

Assuming the initial vertical length of the wire rope
is 1o, l; is the verlical length at the time ¢, the elastic
extension of the rope is 47 and the vertical displacement
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at the trolley position is V. .
‘/ow = lO - [r‘ (2)

Where V,,,, is the shortening of the vertical length of
the wire rope only caused by hoisting the lifting weight.
From Fig. 3, we can establish the equation:

L+ 04+ Vouw +Vyy=lg+ V), 3)
From Eqgs (2) and (3), we get:
5=V -V, “)
The tension F' of the wire rope at the time ¢ is given
by:
F=kp(t) -0 =kp(t)(Vy — Vi) (5)

Where kg, (t) is the stiffness of the wire rope at the
t-time:

ki(t) = Er - A/l (©)

Where E. is the elastic modulus of the wire rope and
A, is the cross — section area of the wire rope.
Replace the F' in Eq. (1) by the F' in Eq. (5), the
dynamic equation in Y — direction is got:
A'[w ‘/w -+ Cw ‘/w T kL(t)‘/w
=kp(t)V,, — (W + My - Vou) (7)
=kr(t)V, +Q

Where V,,, varies with the different moving phases
as follows:

‘../ow t = [TO’ TIJ
5 0 te [TO:T3]
‘/ow = %,
~Vow t € [T3,Ts) (8)

6 t32T

Due to the unloading T — Tg, the ALy, in Eq. (7) is
defined as:

t—1T
M, =M, + (1— GE ;)
8 — 45

M|Ts <t < Ty

9)

My = 1\[1|T5 >t,ort>1Tg (9%)

Where A is the mass of the bucket, A/5 is the mass
of goods.

2) X —direction
The vibration of the lifting weight at the horizontal
(X) direction. The lifting weight exerts different hori-
zontal force F, on the crane structure in different time
interval described as follows:
A) In Ty — T4, the lifting weight has no movement
in X — direction.
Fr=0 (10)
B) In T, — T, following the horizontal acceleration
of the trolley, the lifting weight gradually acquires the

same horizontal speed as the trolley, which exerts the
horizontal force F. on the structure. The F}, is:

F,=—-M, a,- <f_'_TL> |

T/ o
(t—Ty) <T(t)/4
Fp = —My -az|(t — To) > T(t)/4 (1)

Where 7'(t) is the swing period of the lifting weight
at the time ¢, and its swing angle is relatively small
(8 < 5°), we can calculate the T'(¢) using the following
formula:

T(t) =27/l /g (12)
C)InTy —Tg, Thelifting weight moves horizontally

at the same speed as the trolley,
F,=0 (13)

D) InTs—T7, the trolley has a horizontal decelerated
motion, according to the analysis in B):

t—Ts
Fo=My-ay - t— Ty
R e [

(14)
<T(t)/4

Fy = My - az|(t — T5) > T(t)/4 (14°)

3.2. Structural dynamic equation

In order to establish the dynamic equation of the
structural system, we first study the displacement re-
lationship among the lifting weight’s center of gravity,
the hanging point on the trolley and the related structure
nodes, shown in Fig. 4.

Assuming at a certain moment ¢, the left and right
wheels of the trolley have been respectively on the
spaces among the nodes of 4,7, k and [ of the boom
discretized by the finite element. The V, in Fig. 4 is
same as the V in Fig. 3. According to the Fig. 4,

the displacement relationship between the V/ and the
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Fig. 4. Trolley move.

structure nodes of 7, 7, k and [ can be obtained,
Vo =1/2(Va + W) (15)

Where V, is the displacement of the trolley’s left
wheel, V, is the displacement of the right wheel.

Vo=(1~-s1/L)Vi+s1/LV;
=(1-a)Vi+a,V

(16)

Vo = (1 = s2/l2) Vi + 52/12V}
= (1 — (1‘2)‘/1,- + 0'2‘//

sy is the distance from the trolley’s left wheel to the
node 7, shown in Fig. 4.
s9 1s the distance from the trolley’s right wheel to the
node k, shown in Fig. 4.
[1 is the distance between node 7 and node 7, shown in
Fig. 4.
[ is the distance between node & and node [, shown in
Fig. 4.
s1 and so are based on Eqs (18) and (19):

(17)

i M
i

Fig. 5. Elevation of crane.

(20 — 2 t € [To. T4

2o +1/2-ap(t — To)? — t € [T5, T3]

20+ Cy + Vet = Ty) — i t € [Ty, Tt)

o= 19+ Ch + Vie(t — TGZ te [TG’TT]

——1/2 : (l.,-(f — Tﬁ)- — .U
70+ Ch =1/2-a.(t - T7)? t € [T7, Ty
=l (18)

Where.
C1=1/2 a,(Ty — T»)?,

Coy = C1 + Vo (T — Ty),

Cs = Ch + Vo (T7 — Tp) (19)
~1/2- a.(T7 — Ts)?

So=T; + 81+ Lap — x4

Where, z is the initial = coordinates of the trolley’s
left wheel, 2; is the = coordinates of node i in Fig. 4.
Ly, is the distance between the trolley’s left wheel a
and the right wheel b, shown in Fig. 4.

Substituting Eqgs (16) and (17) into Eq. (15), we can
obtain:

Vi =1/2{(1 = a1)V; + a;V;
+(1 = a2)Vk + a2V}

(20

Now, we know the displacement relationship be-
tween the structure and the hanging point on the trolley.
The structural dynamic equation is:

MU +CU + KU = f(t) 2n
U=[U.W,..., Ui Vi,....Un, VN)T 217)

Where N is the total node number of the structure.

Following discusses the effect of the moving trolley
and the lifting weight on the A/, K and f(t) in the
structural dynamic equation.
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U; V; . 'lLJ' 'L‘]'

AM(t) =m

3.2.1. The effect of the trolley’s horizontal movement
on M and f(t)
(1) For the mass matrix A
When the trolley is moving, its mass is distributed to
the nodes of 7, 7, k and [ as follows:
M;=(1-a;)m M;=a;-m
(22)
Mp=(1—a)m M =as-m
Where, m is the half mass of the trolley. a = s;/0;
and ag = s3/l2, see Eqs (16) and (17).
(2) For the load f(t)
A) X —direction (horizontally)
The trolley gives the structure horizontal forces in
the phase of acceleration and deceleration described as
follow:

a. InTy — 1%, there i1s no horizontal force.
b. Inls — T}

o =—(L—a1)ma, f{, = —arma,

(23)
= —(1 —as)ma, = —QoMay
fz=—(1 ) I

c. InTy — T, there is no horizontal force.
d. In T — T%, the trolley moves at an acceleration

Of —Qy.
1o =—01—a)m(—ay)
fﬁr = —aym(—ay,)
(24)

f2r = —(1 - as)m(~az)

. = —aam(—ay)

(1-a)

Uj Uk Lo UV

(30)

(1—a)

B) Y —direction (vertically)

The trolley’s reaction on the structure in Y —direction
is always existing. These are constant forces, which
are considered in the static analysis. We simply offer
the formula herein:

o __
fo=—0—ai)mg f5 =—aimg 5)
fioy =1 —a2)mg ff, = —asmg

3.2.2. The effect of the lifting weight and wire rope on
the K and f(t)

(1) For the f(t)

A) In X —direction, reference (o section 2) of 3.1, we
have already known the lifting weight’s reaction on the
structure in this direction. It only needs to be distributed
to the nodes of i, 7, k and [ based on following laws:

r=01-a1) F/2 fii=a1-F/2

iT
frie =1 —a2) Fu/2 fi=a1 F/2
B) Y —direction (vertically)
wo_ (1 CF/2 0 fY = _q, . F/2
-n.J ( al) / sz:/ aq / @7
f,\uy:—(l—ag)F/Z f]?j:_OQ'F/Q

Where F' =k (V) — V) > 0 is unknown.

(2) For the stiffness matrix /" and damping matrix
&

From Eq. (27), we know that the force in Y — direc-
tion caused by the lifting weight is related to the dis-
placements of the hanging point and the lifting weight’s
center of gravity (i.e. V, and V},). In the actual calcu-

(26)
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cee Uy U; U Vo U VL U VL woe
0 -
-6
—6
/31
B
(dAMN(t))/dt = m (32)
—./32
—B2
—[32
)
L 0]
o Vi Vj Vi o g () 3
(O .. 0 0 0 0 .07
0 (1-ay) (I-aj)ar...(l—a)(1—-az2)...(1—aj)az...0
0... (I-aj)ay a3 a1(l —as) ajas  ...0
AK = 1/dky(t) = | z 5 ; : JIED
0...(1—a)(l —az)... ajao (1 — as)? (1 =a3)as...0
0... (1-aj)as Qajas as(l —as) ... a3 .0
L0 0 0 0 0 0 0 0
lation, first the V}, in Eqs (7) and (21) is canceled by Where 31 = (dsi/dt)/ly = day/dt, B2 =
Eq. (20), and then substitute Eq. (27) into Eq. (21), and (dsa/dt)]la = dao/dt
the items ofn.ode dxs'placement_s in Eqs‘(7) and (21) are ) (K + AK(t) Ky
moved to their left side respectively. Finally we obtain K(t) = Kuu ki (1) (33)
the following global dynamic equation: ) '
MU +CHU+ K@) = f (28) U=[U" vt (35)
Where Where
M+ AM(t) 0 Kwy =Ky
_ 2
ML) [ 0 M, (5) i
=1/2kp(®)[0,..., =1 —ay),.... (33")
C + (dAMNL(r))/dt O v Uk "
A 31 !
e {0 Cy (31) —aiy ..., —(l—ag), ..., —ag,...- 0]

Where C is the structure damping matrix and C', is
the damping of the lifting weight.

We can get the dynamic response of the struc-
ture by solving the Eq. (28). The explicit central
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difference method is used to solve the Eq. (28) in
this paper. The unique condition for solving is that
the time step length should be small enough, i.e.
At < Ater(Ater = Ty /m), Atey is the critical step
length and 7}, is the minimal period of the structure
system. In the following section, we give an example
to show the actual application of this method.

4. Example

Figure 5 is the elevation sketch of a typical bucket
ship unloader. Finding the maximal displacement of

g
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vibration.

the key nodes from the phases of the hoisting of the
lifting weight and the moving of the trolley to the phase
of unloading (i.e. the dynamic response).

Given:

Mass of lifting weight = 20,000 kg, mass of bucket
= 10,000 kg, mass of trolley = 34,000 kg, initial length
of wire rope = 22 m, total metallic section area of
wire rope = 0.0012 m?2, elastic modulus = 1011 N/m2,
hoist speed = 2.8 m/s, hoist acceleration = 0.78 m/s,
trolley’s speed Vo = 2.8 m/s, trolley’s acceleration
= 0.74 m/s%. Sizes and geometrical properties for
members in the structure. We neglect the influence of
damping.
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We use Super SAP 91 and the central difference algo-
rithm above mentioned respectively to analyze this ex-
ample. The results are summarized in Table 1. (Table |
only includes the maximal displacement of concerned
nodes.)

As shown in Table I, the analysis model in Super
SAP 91 isin complete agreement with the one in DOOF
(DOOF is a program using this method with no chang-
ing mass matrix M and stiffness matrix K). That is, at a
certain moment we only take into account the influence
of the weight’s force in the structural dynamic response,
neglecting both the variable stiffness of the wire rope

and the vibration of the trolley and lifting weight. The
analysis time is the hoisting phase (T0-T2). In Table |
the results of Super SAP 91 and DOOF is compara-
tively close to each other when the conditions stay the
same. The errors come from the different algorithm
for solving the dynamic equation, because the method
of Wilson-6 is used in Super SAP 91, we choose the
explicit center difference method. In DKMFE(1) and
DKMF(2) (DKMEF is a program using this method with
changing mass matrix M and stiffness matrix K), the
variations of mass matrix and stiffness matrix are taken
into account. The analysis time interval in DKMF(1) is
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Table |
Displacement (m) comparison of key nodes
NODE Super SAP91 DOOF DKME(1) DKMF(2)
T=0-624s T =0-06.24s T=0-6.24s T=0-16.5s
<F> change <F> change [M],[K],<F> change [M],[K],<F> change

9 X 3.20E-3 3.19E-3 8.15E-3 9.75-3 (T = 8.8)

Y 6.20E-4 6.10E-4 6.90E-4 9.17E-4 (T =15.72)
11 X 3.16-3 3.20E-3 8.24E-3 9.86E-3 (T =8.8)

Y 3.97E-4 3.65E-4 4.10E-4 5.00E-4 (T =9.4)
21 X 2.83E-3 2.97E-3 8.84E-3 1.04E-2 (T = 8.8)

Y 4.76E-2 4.67E-2 6.94E-2 7.16E-2 (T =06.72)
25 X 2.83E-3 2.97E-3 8.80E-3 1.04E-E2 (T =8.0)

Y 1.81E-2 1.76E-2 2.46E-2 2.74E-2 (T =9.4)
29 X 2.81E-3 2.96E-3 8.80E-3 1.03E-2 (T = 8.0)

Y 7.68E-3 4.95E-3 4.40E-3 9.45E-3 (T = 12.68)
33 X 2.79E-3 2.97E-3 8.70E-3 1.OIE-2 (T =8.0)

Y 1.64E-3 1.62E-3 1.83E-3 2.43E-3 (T = 15.72)
40 X 2.80E-3 3.00E-3 8.8E-3 1.00E-2 (T = 8.0)

Y 1.00E-3 9.30E-4 1.10E-3 1.27E-3 (T'=94)
50 X 1.17E-2 1.16E-2 1.47E-2 2.12E-2 (T'=9.4)

Y 3.43E-3 3.40E-3 4.34E-3 5.06E-3 (T'=9.4)

TO-T2 (the hoisting phase). The analysis time interval
in DKMF(2) is TO-T8 (the whole process, from as-
cending to travelling and unloading). One can clearly
find out that the difference of the maximal displacement
between considering the variations of M, K and not
from Table 1. We can see from the results, the maximal
displacement occurs after the moment of 7" > 6.24 s
(the hoisting phase). These results are also distinctly
different from those of the traditional dynamic response
analysis in which the maximal displacement occurred
in the hoisting. Also the maximal values between the
two methods are also distinctly different. For the sake
of intuitive observation, we draw the variation of dis-
placement in x and y directions of the concerned nodes
in TO-T8 shown from Fig. 6 to Fig. 10. There are sig-

nificant difference between considering the changes of
(M, K) and not.

5. Conclusions

1) By comparing the analysis results of this method
with that of Super SAP 91, we find:

(1) This method is correct and reliable.
(2) The distinct difference of the results shows
the necessity of this method.

2) The traditional design only takes into account the
ascent phase. This phase is thought of the most




